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ABSTRACT

Let R be a domain with quotient field K, and let 7 be an ideal
of R. We say that I'is powerful (strongly primary) if whenever
x,yeKand xye I, wehavexe Rorye R{xclory' el
for some n > 1). We show that an ideal with either of these
properties is comparable to every prime ideal of R, that an
ideal is strongly primary <« it is a primary ideal in some va-
luation overring of R, and that R admits a powerful ideal & R
admits a strongly primary ideal < R is conducive in the sense
of Dobbs-Fedder. Finally, we study domains each of whose
prime ideals is strongly primary.
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1592 BADAWI AND HOUSTON
INTRODUCTION

Throughout this work R will denote an integral domain with quotient
field K. Recall from [10] that a prime ideal P of R is said to be strongly prime
if, whenever xy € P for elements x,y € K, we have x € Por y € P. In this
paper, we consider two generalizations of this concept. We define a nonzero
ideal T of R to be powerful if, whenever xy € [ for elements x, y € K, we have
x € Rorye R Itis easy to see that R itself is powerful < R is a valuation
domain. In the first section, we show that a powerful prime ideal is strongly
prime. We also show that if 7 is a proper powerful ideal of R, then its radical
Rad(7) is prime in general and strongly prime when R is seminormal [Pro-
positions 1.9 and 1.12]. Moreover, a powerful ideal / is comparable to every
nonzero prime of R, from which it follows that the prime ideals contained in
Rad () are linearly ordered [Theorem 1.5]. The remainder of the first section
is devoted to a study of overrings. We show in Proposition 1.17 that if R
admits a powerful ideal and 7 is an overring of R, then R and T share an
ideal which is powerful in both rings. Conversely, in Proposition 1.18, we
prove that if 7is an overring of R such that R and 7 share a common ideal J
which is powerful in 7, then J3 is a powerful ideal of R.

As another generalization of the notion of “strongly prime,” in Sec. 2
we define an ideal I of R to be strongly primary if, whenever xy € I with
x,y € K, we have x € T or y" € I for some n > 1. Simple examples show that
“powerful” and “strongly primary” are different notions. A proper strongly
primary ideal of R is clearly primary, and we observe that the converse is
true in a valuation domain [Proposition 2.1]. In fact, noticing that the
property of being strongly primary is independent of the domain in which 7
happens to be an ideal, this characterizes whether a given ideal is strongly
primary. More precisely, we show in Theorem 2.11 that an ideal of T of R s
strongly primary < [ is a primary ideal in some valuation overring of R. We
also show that a strongly primary ideal of R is comparable to every radical
ideal of R [Theorem 2.8] and that a proper strongly primary ideal 7 of a
seminormal domain is powerful with Rad(/) strongly prime [Theorem 2.4].

Section 3 is devoted to a study of a generalization of pseudo-valuation
domains (PVDs). Recall from [10] that a PVD is a domain in which each
nonzero ideal is strongly prime and that PVDs are characterized as quasi-
local domains (R : M) with the property that (M : M) is a valuation domain
with maximal ideal M. We define an almost pseudo-valuation domain
(APVD) to be a domain each of whose prime ideals is strongly primary. The
main result of this section then characterizes APVDs as quasilocal domains
(R, M) such that (M : M) is a valuation domain with M primary to the
maximal ideal of (M : M). We also consider overrings of an APVD, and we
prove that the integral closure of an APVD is a PVD.
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Finally, in Sec. 4, we relate our work to the conducive domains of
Dobbs-Fedder. In [7], they define a conducive domain to be a domain R
such that for each overring 7 # K of R, the conductor (R : T) is nonzero.
We show that a domain R is conducive <& R admits a powerful ideal & R
admits a strongly primary ideal. We also use our techniques to recover the
Dobbs-Fedder characterization of conducive Priifer domains and the Bar-
ucci-Dobbs-Fontana characterization of conducive Noetherian domains.

1. POWERFUL IDEALS

We begin with a simple but useful restatement of the definition of
powerful.

Lemma 1.1. An ideal I of R is powerful < x~'1 C R for each x € K\R.

Proof. Assume that [is powerful, and let x € K\R. Then for a € I we have
xx'a=aec I, whence x"'a € R. For the converse, let yze€ I, y,z€ K.
Suppose y¢ R. Then z = y~'yz € y~'1 C R, as desired. O

As an easy consequence of the lemma, we obtain the fact that power-
fulness is preserved upon passage to homomorphic images.

Proposition 1.2.  Let I be a powerful ideal of R, and let Q be a prime ideal of
R which is properly contained in I. Then I/Q is powerful in R/Q.

Proof. Let ¢: R— R/Q denote the canonical homomorphism. Suppose
that x = ¢(y)/¢(z) is an element of the quotient field of R/Q with x¢ R/Q.
Then y/z¢ R. Hence if a €I, we have (z/y)a€ R, and it follows that

(¢(z)/d(»))¢(a) € R/Q. Thus x"1(I/Q) C R/Q, as desired. O

Proposition 1.3. 4 prime ideal of R is strongly prime < it is powerful.

Proof. Suppose that P is a powerful prime ideal of R. Let xy € P for some
x,y € K. Then x?y? € P. We may assume x¢ R and y € R. If x? € R, then,
since x¢ R, x*¢ P, and the fact that x2y* € P then implies that y* € P,
whence y € P. If x>¢ R, then, since (y?/xy)x? € P, we have y*/xy € R.
Hence y? = (3*/xy)xy € P, and again we have y € P. The converse is
trivial. il

It is known that if Q C P are prime ideals of R such that P is strongly
prime, then @ is strongly prime [1, Proposition 4.8]. By Proposition 1.3, the
following result, whose proof is trivial, generalizes this fact.
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Proposition 1.4. If J C I are ideals of R with I powerful, then J is also
powerful.

Theorem 1.5. Letr I be a powerful ideal of R.

(1) If J is an ideal of R, then either J C I or PP C J.
(2) If J is a prime ideal of R, then I and J are comparable.
(3} The prime ideals of R contained in Rad(l) are linearly ordered.

Proof. To prove (1), suppose that J is an ideal of R with JZI. Choose
a € J\I, and let b,c € I. Then (bc/a)(a/b) € I, and since I is powerful with
a/b¢ R, we have be/a € R. Hence be € aR C J, as desired. Statement (2) is
immediate from (1). For (3), let P, Q be prime ideals properly contained in
Rad(/). Then P and Q are contained in / and are therefore powerful by
Proposition 1.4. Hence they are comparable by (2). |

The following result is an easy consequence of Proposition 1.3 and
Theorem 1.5.

Corollary 1.6. A domain R is a PVD < some maximal ideal of R is
powerful.

Proposition 1.7. If R contains a powerful ideal, then R contains a unique
largest powerful ideal.

Proof. It suffices to show that the sum of powerful ideals is again powerful.
Thus let {/,} denote a family of powerful ideals of R. If x € K\R, then
x~'I, C R for each o« by Lemma 1.1. Hence x~!' Y, I, C R, and we have that
> I, is powerful, again by Lemma 1.1. d

Qur next result generalizes [10, Proposition 2.4].

Proposition 1.8. If I is a proper powerful ideal of R, then P = NX I is a
strongly prime ideal.

Proof. 1t suffices by Propositions 1.3 and 1.4 to show that P is prime. Let
xy € P with x € R\P. Then x¢ I" for some n > 0, whence by Theorem 1.5,
12 C xR. Hence for each k > 0, we have xy € P C "% C x/*. Thus y € I
for each k > 0. It follows that y € P. {3

Proposition 1.9.  Let I be a powerful ideal of R. If x,y € K and xy € Rad(7),
then there is a positive integer m such that either X" € I or y™ € L. In parti-
cular, if I is a proper powerful ideal, then Rad(I) is prime.
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Proof. We have (xy)" € I for some n > 0. Hence (x*"/x"y") (3*"/x"y") =
x"y" € I. Since I is powerful, either x/x"y" € R or y*"/x"y" € R, whence
either x € Tor y € I. 0

In spite of Proposition 1.9, the radical of a powerful ideal need not be
powerful, as the following example shows.

Example 1.10. Let V' =k -+ M be a rank one discrete valuation domain,
where k is a field and M = (V is the maximal ideal of V, and let R = k + M?>.
Claim: M? is a powerful ideal of R. To see this, let xy € M3, with x,y € K
{the common quotient field of R and V). We may write x = ut", y = vf”,
where u, v are units of V and n, m are integers. Since xy € M>, we must have
n-+m > 3. Hence either n > 2 orm > 2,say n > 2. Then x = ur" € M> C R.
This proves the claim. However, (in R) Rad(M?*) = M? is not powerful since
2 € M* but t¢ R.

We prove below that in a seminormal domain the radical of a powerful
ideal is powerful. First, we need a lemma.

Lemma 1.11. Let I be a powerful ideal of R. If x € K and x" € I for some
n> 0, then x"** € R for each k > 0.

Proof. Llete=min{m > 1|x™ € R}. Let k be a positive integer, and write
k=gqge+r with 0<r<e If r=0, then it is easy to see that X"k e R,
Suppose that r > 0. We have x*"x%+"+" = x"x(4+1)e ¢ I Since x*"¢ R, we
have x"k = x4 ¢ R as desired. 7

Now recall from [2] that a radical ideal J of R is said to be strongly
radical if x € K and x" € J for some n > 0 implies that x € J. We also recall
that R is seminormal if x € R whenever x” € R for all sufficiently large n.

Proposition 1.12. Let I be a proper powerful ideal of R. Then Rad(l) is
powerful (and therefore strongly prime) <> Rad([l) is strongly radical. In
particular, if R is seminormal, then, Rad(I) is strongly prime.

Proof. 1t is easy to see that a powerful radical ideal must be strongly
radical. Suppose that Rad(J]) is strongly radical, and let xy € Rad(/) with
x,y € K. Then by Proposition 1.9, we have x™ € I or ™ € I for some m > 0.
We may suppose that x™ € 1. Then x™ € Rad(]), whence x € R, as desired.
The “in particular” statement now follows from Lemma 1.11. ]

Proposition 1.13.  Ler I be a powerful ideal of R, and let T be an overring of
R. Then IT is a powerful ideal of T. In particular, if IT=T, then T is a
valuation domain.
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Proof. Let x € K\T. Then x¢ R, whence x '/ C R by Lemma 1.1. It fol-
lows that x"'/T C 7. Hence IT is powerful in 7T, again by Lemma 1.1. It is
easy to see that a domain 7 is a valuation domain <« 7 is powerful as an
ideal of 7. O

Proposition 1.14.  Ler [ be a powerful ideal of R, and suppose that P C I'is a
nonzero finitely generated prime ideal of R. Then R is a PVD with maximal
ideal P.

Proof. If Pisnot maximal, then R contains a nonunit x with x¢ P. Since P
is strongly prime and xx ' P C P with x¢ P, we have x~' P C P. Hence x~!
is integral over R, which is impossible. Thus P is maximal, and it follows
that Ris a PVD. |

We use R to denote the integral closure of a domain R,

Theorem 1.15. Suppose that R admits a powerful ideal I and that M =
Rad(l) is a maximal ideal of R. Then:

(1) R is quasilocal with maximal ideal M.

(2) IR C M, and therefore IR is an ideal of R.

(3) R isa PVD with maximal ideal N = Rad(JR’), and hence (N : N) =
{x € K| xN C N} is a valuation overring of R with maximal ideal N.

Proof. Statement (1) follows from Theorem 1.5. Now let x € RAR. Note
that since R is integral over R, we must have x'¢ R. Hence x/ C R by
Lemma 1.1. In fact, xJ C M (otherwise, x/ = R, and x~! € R). It follows
that IR C M, proving (2). For (3), note that IR is powerful in R’ by
Proposition 1.13. Hence N = Rad(/R') is strongly prime in R’ by Pro-
position 1.12. By (1), R is quasilocal with maximal ideal N. Hence R is a
PVD by [10, Theorem 1.4}, and (N : N) is a valuation overring with maximal
ideal N by [10, Theorem 2.10]. 1

Corollary 1.16.  Let I be powerful in R, and let P = Rad(I). Then (Rp) is a
PVD with maximal ideal N = Rad(I(Rp)). It follows that (N:N) is a
valuation overring of R with maximal ideal N.

Proof. Note that Pis prime by Proposition 1.19. By Proposition 1.13, IRp is
a powerful ideal of Rp, and the result now follows from Theorem 1.15. [

Proposition 1.17. Let I be a powerful ideal of R, and let T # K be an
overring of R. Then R and T share an ideal which is powerful in both R and T.
In fact:
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(1) IfIT=T, then P = N R, where N is the maximal ideal of T, is a
common ideal which is powerful in both rings.

(2) IfIT # T, then I°T is a common ideal, and I’ T is powerful in both
rings.

Proof. For (1), recall that T is a valuation domain by Proposition 1.13. By
Theorem 1.5, I is comparable to P. The fact that /7 = T then implies that
Pgl, whence P is powerful, and therefore strongly prime, in R. Note that
PT is powerful in T by Proposition 1.13. We claim that PT = P. To verify
this, let x € T\ R. Clearly, x! ¢ P. Hence, since x 'xP C P and P is strongly
prime, we have xP C P, as claimed. For (2), let x € T\R. If x"'¢ R, then
xP CxICR by Lemma 1.1. If x~' € R, then, by hypothesis, x~'¢1,
whence /2 C x~ 'R by Theorem 1.5. Hence, again, x/> C R. Thus T is an
ideal of R. Since T C 1, PT is powerful in R by Proposition 1.4, and T is
powerful in T by Proposition 1.13. O

Proposition 1.18.  Suppose that T is an overring of R and that R and T share
the nonzero ideal J. If J is powerful in T, then J° is a powerful ideal of R.

Proof. Letx € K\R.If x¢ T, then x~'J C T by Lemma 1.1. In this case, we
have x~'J3 C 2T C R. Now assume x € T. Since x¢ J, we have J> C xT by
Theorem 1.5. Hence x~!J? C JT = J C R, and the proof is complete. |

1t is not difficult to show that, with the notation of Proposition 1.18, if
T is a valuation domain, then J? is powerful in R. However, for general T,
the third power is best possible, as the following example shows.

Example 1.19. Let k denote the field Q(v/2), and let V = k[[X]] = k + M,
M = Xk[[X]]. Thenlet T=Q+ M, J=XT,and R=Q +J. Then Rand T
share the ideal J, and, since T is a PVD, J is powerful in 7. However, J? is
not powerful in R, since v2X - v2X = 2X? € J2, but vV2X¢ R.

2. STRONGLY PRIMARY IDEALS

Proposition 2.1. 4 primary ideal of a valuation domain is strongly primary.

Proof. Let V be a valuation domain with quotient field K, let [ be a pri-
mary ideal of ¥V, let x,y € K with xy € I, and suppose that x¢ L If x¢ V,
then x~! € V, and we have y = x~'xy € I. Hence we may as well assume
that x € V. Since x = y~'xy¢ I, it follows that y € V. Now, since x,y € V'
with / primary, we have 3" € I for some n > 1, as desired. ]

Observe that if V' is a valuation domain which is not rank one, then
there are ideals which are not primary [9, Exercise 2, p. 292]. Since every
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ideal of a valuation domain is powerful, this shows that powerful ideals need
not be {strongly) primary. Conversely, strongly primary ideals need not be
powerful: In Example 1.10, M? is strongly primary but not powerful in R.

Notation 2.2. For a subset S of R, we define E(S) by
E(S)={xe K|x"¢ S foreachn>1}.

The following lemma provides a useful restatement of the definition of
strongly primary.

Lemma 2.3. A nonzero ideal I of R is strongly primary if and only if x ' I C I
Sor each x e E(I).

Proof. 1f Iis strongly primary and x € E(I), then the equation xx™ '/ = I
implies that x~'7 C I. Conversely, if yz € I with y,z € K and z € E(I), then
the hypothesis yields y = z7'yz € 2711 C I, as desired. O

Theorem 2.4. Let R be a seminormal domain. If I is a proper strongly pri-
mary ideal of R, then I is powerful, and Rad (1) is strongly prime. In particular,
a prime ideal of R is strongly prime if and only if it is strongly primary.

Proof. Let x € K\R; we shall show that x~'7 C I (whence x~'/ C R). By
Lemma 2.3, it suffices to show that x"¢ ] for all n > 1. Suppose, on the
contrary, that x” € I, with » minimal. It is then easy to see that xk¢ 1 for
each k >0, that is, that x~! € E(I). By Lemma 2.3, this implies that
x"*! = xx" € xI C I. By induction, we get x’ € I C R for each 7 > r. How-
ever, the seminormality of R then implies that x € R, a contradiction. [J

Proposition 2.5. Let I be a proper strongly primary ideal of R, and let T be
an overring of R. Then either IT = T or IT = 1.

Proof. Assume IT # T, and pick x € T\R. If x™ € I for some n > 1, then,
since IT # T, x™" is a nonunit of T, a contradiction. Hence x~! € E(I), and
we have x/ C I by Lemma 2.3, Thus IT = L. O

Recall that R’ denotes the integral closure of the domain R.

Corollary 2.6. If I is a proper strongly primary ideal of R, then IR = I
Moreover, P is powerful in both R and R'.

Proof. The first conclusion follows from Proposition 2.5 and the lying over
property of integral extensions. Since / is automatically strongly primary in
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R', I'is powerful in R’ by Theorem 2.4. It follows that P is powerful in R and
R’ by Proposition 1.18. O

Corollary 2.7. If I is a proper strongly primary ideal of R, then M2\ I" is a
strongly prime ideal of R.

Proof. This follows from Proposition 1.8 and the fact that P is powerful.
Ul

Theorem 2.8. If I is a strongly primary ideal of R, then I is comparable to
every radical ideal of R. Moreover, the prime ideals of R which are properly
contained in I are strongly prime and linearly ordered.

Proof. Let J be a radical ideal of R, and suppose that /ZJ. Choose
ae I\J, and let b € J. Since (a*/b)(b/a) =a € I and a*/b € E(R) C E(I),
we have b/a € I. Hence J C 1, as desired. If P is a prime ideal which is
properly contained in I, then, since I is powerful by Corollary 2.6, and
P C I*, Pis also powerful. Then P is strongly prime by Proposition 1.3. The
rest follows from Theorem 1.5. O

The following result is an immediate consequence of Theorem 2.8.

Corollary 2.9. If P is a prime ideal of R which is strongly primary but not
strongly prime, then P is the only prime with this property.

Theorem 2.10. Let I be a strongly primary ideal of R, and let T # K be an
overring of R. Then R and T share a strongly primary ideal. In fact:

(1) if IT# T, then IT = I is a common strongly primary ideal;
(2) if IT = T, then T is strongly primary, and for each maximal ideal N
of T, NN\ R is a common strongly prime ideal of R and T.

Proof. Statement (1) follows from Proposition 2.5. Now assume IT = T. If
x € E(T), then x € E(I), whence x™' I C I. It follows that x ' T C T, and T'is
strongly primary. Now let N be maximal in 7, and let P = NN R. Then 7 is
comparable to P by Theorem 2.8, and since /T = T, we must have P¢l. By
Theorem 2.8, P is strongly prime. It then follows from (1) that P is a
common strongly prime ideal of R and 7. D

Theorem 2.11. Let I be a proper ideal of a domain R. Then the following
statements are equivalent.

(1) Iis a strongly primary ideal of R.
(2) Iis a primary ideal in some valuation overring of R.
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(3) V={(I:1}is a valuation domain, and I is {an ideal of V which is)
primary to the maximal ideal of V.

Proof. (1) = (3). Let x € K\ V. By Corollary 2.6, Iis an ideal of R'. Hence
R C(I:I)=V, and, since x¢ V, we have x¢ R, whence x"¢ R for all
n > 1. In particular, x € E(I), and we have x ' C I,ie., x! € V. Thus Vis
a valuation domain. Now let P == Rad(]). Then IVp # Vp, so that IVp =1
by Proposition 2.5. Since (7: 7} is the largest overring of R in which 7 is an
ideal, we have that ¥p = V, whence P is the maximal ideal of V.

(3) = (2). Clear.

(2) = (1). Statement (2) implies that [ is strongly primary by
Proposition 2.1. il

Corollary 2.12. If R admits a nonzero proper principal strongly primary
ideal, then R is a valuation domain.

Progf. let Ra be a nonzero principal strongly primary ideal of R. Then
R = (Ra : Ra) is a valuation domain by Theorem 2.11. .

Proposition 2.13.  Ler I be a strongly primary ideal of R. Then

(1) IC xR for every x € R\Rad([), and
(2) if I is finitely generated, then R is quasilocal with maximal ideal
Rad(7).

Proof. Letx € R\Rad(J). Then x € E(I), and so (by Lemma 2.3) x ' 7 C I.
Hence 7 C xI C xR, proving (1). For (2), the relation x~!7 C I shows that
x~!is integral over R; since x € R, this implies that x~! € R. It follows that
R is quasilocal with maximal ideal Rad(J). O

Proposition 2.14. Let P be a strongly primary prime ideal of R, and let I be
an ideal of R with Rad(l) = P. Then PI is strongly primary. In particular, P"
is strongly primary for n > 1.

Proof. Let x € E(PI). Since P = Rad(PI), we have x € E(P). Hence
x~1P C P, and we have x~'PI C PI, as desired. O

3. ALMOST PSEUDO-VALUATION DOMAINS

Definition 3.1. We say that a domain R is an almost pseudo-valuation
domain (APVD) if every prime ideal of R is strongly primary.
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Recall from [6] that a prime ideal of a domain R is said to be divided if
it is comparable to every ideal of R. If every prime of R is divided, then R is
called a divided domain.

Proposition 3.2. Let R be an APVD. Then R is a (quasilocal) divided
domain. Moreover, every nonmaximal prime ideal of R is strongly prime.

Proof. Proposition 2.13(1) shows that a strongly primary prime ideal is
divided. The second statement follows from Theorem 2.8. O

Our next result shows that the requirement that each primary ideal of a
domain be strongly primary is very restrictive (and hence explains why we
defined APVD as we did). Recall that a prime ideal P of a domain R is said
to be unbranched if P is the only P-primary ideal of R [9, p. 189]. A prime
ideal P of a (pseudo-)valuation domain is unbranched < P is the union of
the chain of primes properly contained in P.

Proposition 3.3. The following are equivalent for a domain R.

(1) Each primary ideal of R is strongly primary.
(2) Either R is a valuation domain or R is a PVD with unbranched
maximal ideal.

Proof. Suppose that each primary ideal of R is strongly primary. Then R is
an APVD and is therefore quasilocal by Proposition 3.2. Assume that R is
not a valuation domain, and let M be the maximal ideal of R. Then M is
strongly primary, whence, by Theorem 2.11, ¥V = (M : M) is a valuation
overring with M primary to the maximal ideal N of ¥. Suppose that N # M.
Then by [9, Theorem 17.3], there is a prime ideal P of V with ht(N/P) = 1.
We must have P C M, so that P is also a prime ideal of R (possibly,
P = (0)). Pick a € M\ P. Then, since M is maximal in R, Ra is M-primary.
Hence Ra is strongly primary. However, by Corollary 2.12, this implies that
R is a valuation domain, a contradiction. Hence we must have N = M, and
so Risa PVD. An argument similar to the one just given shows that M must
be unbranched.

For the converse, recall that every primary ideal of a valuation domain
is strongly primary by Proposition 2.1. Let (R, M) be a PVD with M
unbranched, and let V' = (M : M) be the canonical valuation overring (also
with maximal ideal M). Let I be a primary ideal of R. Since M is unbran-
ched, Rad(/) is a prime ideal P# M. Since I is P-primary, we have
I=IRpNR=1IVpNROIVNR Hence I=1IV. ThusI=IVpN V¥V, and Iis
primary to the prime ideal P in V. Hence [ is strongly primary. D



1602 BADAWI AND HOUSTON

Theorem 3.4. The following statements are equivalent for a domain R.

(1) Risan APVD.

(2) Some maximal ideal of R is strongly primary.

(3) If N is the set of nonunits of R, then x"'N C N for each element
x € E(N). ’

(4) R is a quasilocal domain, and the maximal ideal M of R is such that
(M M) is a valuation domain with M primary to the maximal ideal
of (M : M).

(5) R is a quasilocal domain, and there is a valuation overring in which
M is a primary ideal.

Proof. The equivalence of (1) and (2) follows from Theorem 2.8, as does
(2) = (3). To show that (3) = (2), it suffices to show that R is quasilocal with
maximal ideal N. In fact, we claim that the prime ideals of R are linearly
ordered. To see this, let P and @ be primes, and suppose that there is an
element b€ Q\P. Let a€ P. Then b"/a"¢ R for each n>0. Hence
b/a € E(N), and we have a/bN C N by assumption. In particular,
a’/b e N C R, whence a € Q. Thus P C Q, as desired. The equivalence of
(1) and (4) follows from Theorems 2.8 and 2.11. Finally, it is clear that (4) =
(5), and (5) = (2) by Proposition 2.1. J

Our next result shows that if R itself is strongly primary, then R is an
APVD.

Proposition 3.5. If R is strongly primary, then R is an APVD (and hence R
admits a proper strongly primary ideal).

Proof. Let M be a maximal ideal of R, and suppose that xy € M with
x,y € Kand x € E(M). We must show that y € M. We may assume xy # 0.
We have x"/xy € E(R) for each n> 1. We first claim that ye R. If
x € E(R), then y = x~'xy € R, as claimed. On the other hand, if x* € R for
some k, then (x**!/xy)y = x* € R with x**!/xy € E(R) again implies that
y€ R Now (3¥/xy)(x*/xy)=xye€ M with x*/xy € E(R) implies that
y}/xy € R, whence 3° = (3*/xy)xy € M. Since y € R, this yields y € M,
as desired. Thus M is strongly primary, and the result follows from
Theorem 3.4. O

The converse of Proposition 3.5 is easily seen to be false. For example,
if R is an integrally closed PVD which is not a valuation domain (e.g.,
R = Q + XQ(Y){[X]]), then R is not strongly primary. (To see this, let V" be
the canonically associated valuation overring, and pick v € V\R. Then
u€ E(R),but u'¢ R)



IDEALS AND DOMAINS 1603

Corollary 3.6. Let R be an APVD with maximal ideal M. If T is an overring
of R with MT =T, then T is also an APVD.

Proof. The hypotheses imply that T is strongly primary by Theorem 2.10.
Hence T is an APVD by Proposition 3.5. O

Proposition 3.7. If R is an APV D with maximal ideal M, then R’ is a PVD
with maximal ideal N = Rad(MR').

Proof. By Corollary 2.6, MR = M. Moreover, by Theorem 2.4,
Rad(MR') is strongly prime. Hence Rad(MR’) is the unique maximal ideal
of R, and R is a PVD. .

We close this section by considering domains each of whose overrings
is an APVD. For PVD's there is a nice characterization: Every overring of a
domain R is a PVD & R’ is a valuation domain [11, Proposition 2.7]. The
situation with APVD's is not so clean.

Proposition 3.8. If each overring of a domain R is an APVD, then R’ is a
valuation domain.

Proof. We have that R’ is a PVD by Proposition 3.7. The proof of [11,
Proposition 2.7] shows that if R’ is not a valuation domain, then there is a
non-quasilocal overring of R’. However, such an overring cannot be an
APVD by Proposition 3.2. O

The converse of Proposition 3.8 is false, as the following example
shows.

Example 3.9. Let V= k + N be a rank one discrete valuation domain with
N=Va Let S=k+Va®, T=k+ Sa*, and R=k+ Va*. Then R is an
APVD and R = V, but T is not an APVD.

In Example 3.9, T is an integral overring of R. The following result
shows that this is the only stumbling block.

Proposition 3.10. Let R be an APVD with R' a valuation domain, and
assume that every integral overring of R is an APVD. Then every overring of
R is an APVD.

Proof. Let T be a non-integral overring of R, and pick x € T\R'. If M is
the maximal ideal of R, then Proposition 3.7 implies that x* € MR = M
for some k > 1. Hence x* is a unit of T, and we have MT = T. Therefore, T
is an APVD by Corollary 3.6. ]
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4. CONDUCIVE DOMAINS

In [5, Theorem 4.5] Bastida and Gilmer prove that a domain R shares
an ideal with a valuation overring < each overring of R which is different
from the quotient field K of R has a nonzero conductor to R. Domains with
this property, called conducive domains, were explicitly defined and studied
by Dobbs and Fedder [7] and further studied by Barucci, Dobbs, and
Fontana [4, 8]. Conducive domains, powerful ideals, and strongly primary
ideals are intimately connected, as we now show.

Theorem 4.1.  The following conditions are equivalent for a domain R.

(1) R is a conducive domain.

(2} R admits a powerful ideal.

{3} R admits a strongly primary ideal.

(4) R shares a nonzero ideal with some conducive overring.

Proof. (1) = (3): Since R is conducive, it follows from [4, Theorem 1] that
R shares an ideal 7 with a valuation overring ¥ such that 7 is primary in V.
By Proposition 2.1, I is strongly primary.

(3) = (2): If R admits a strongly primary ideal, then it admits a proper
strongly primary ideal by Proposition 3.5. Hence R admits a powerful ideal
by Corollary 2.6.

(2) = (1): Let ¥ be any valuation overring of R. Then by Proposition
1.17, R and V share an ideal. Hence R is conducive.

(1) > (4): Assume (4). Let T be a conducive overring of R, and let ¥ be
a valuation overring of 7. Then R and T share an ideal, and 7T and ¥V share an
ideal, from which it follows that R and V share an ideal. Thus R is conducive.
(This argument is similar to that given in the proof of [7, Proposition 3.5],
but the result was not stated explicitly there.) The converse is trivial. |

We close by using our methods to derive the characterizations of
conducive Noetherian domains given in [4] and of conducive Priifer
domains given in [7].

Theorem 4.2 (cf. [4, Theorem 6]). A Noetherian domain R is conducive <
each of the following conditions holds:

{1} R is quasilocal of dimension one,
(2) R'is a rank one discrete valuation domain, and
(3) R is a finitely generated R-module.

Proof. Suppose that R is conducive; then R admits a powerful ideal 1. By
Theorem 1.5, the primes contained in P = Rad(/) are linearly ordered, and
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since R is Noetherian, this implies that htP = 1. Moreover, since P is con-
tained in every nonzero prime of R, it follows that R is quasilocal with

- maximal ideal P. Now R’ is a PVD by Theorem 1.15, whence R’ is quasilocal

and therefore a rank one discrete valuation domain [12, Exercise 14, p. 73].
Also, by Theorem 1.15, the conductor J = (R : R') is nonzero, and since R is
Noetherian, J-' = (R : J) is finitely generated. Thus it suffices to show that
J~! = R'. However, since R’ is a rank one discrete valuation ring, we may
write J = xR'. Hence J™' = x (R : R") = x"'xR' = R/, as desired. For the
converse, note that the fact that R’ is a finitely generated R-module implies
that R and R share a common nonzero ideal. Hence the conclusion follows
from Proposition 1.18. O

Let 7 be a nonzero powerful ideal of R. If /= R, then R is a valuation
domain. If I is proper, then Rad(/) is contained in the Jacobson radical of R
by Theorem 1.5, and Rad(/) is prime by Proposition 1.9. In either case, the
Jacobson radical of R contains a nonzero prime ideal. For a Priifer domain,
the converse is true.

Theorem 4.3 (cf. [7, Corollary 3.4]). Let R be a Prifer domain (which is
not a field). Then R is a conducive domain & the Jacobson radical of R
contains a nonzero prime ideal.

Proof. - Let Q be a nonzero prime ideal contained in the Jacobson radical of
R. Let x € K\ R; we shall show that x~'Q C Ry, for each maximal ideal M
of R. If x¢ Ry, this follows from the fact that x~! € Ry (since Ry is a
valuation domain). Suppose x € Ry. If x¢ QRy, then, since QRy 1s
strongly prime, the fact that xx7'Q CQRy implies that
x7'Q C ORy C Ry. Suppose that x € QRy, and choose s € R\M with
sx € Q. Now, since x¢ R, we must have x¢ Ry for some maximal ideal
N#M. Then x ' € Ry, and hence x7'Q C QRy. It follows that
s = x"lsx € QRy, whence 5 € Q. This contradiction completes the proof.

' O
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